
0V)

* (tD

II

=a
DTIC

k~~VE3EC Soc5 D

Alternating Direction Methods on Multiprocemors

S. Leunart Johusson, Youcef Saad and Martin H. Schultz

Research Report YALEU/DCS/RR-382
October 1985 .

V15TRIBUTION STAT14ET A
Approved for public releoa4

Distribution Unlimited

YALE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

85 11 07 02

%"--,- -- - ;.-- -- -- ,==..m-.,m..=== ====,,,,,-,.- . 7- -. v, ,,. n, !° ' d. .

7 Abstaaet.We propose;,a few implementations ofthe Alt~rnating Direction ethod for solving
parabolic partial differential equations on multiprocessor4 A careful complex* y analysis of these

implementations shows that, contrary to what is generally elieed the metho can be made highly
efficient on parallel architectures by using pipelining and *riations of the c icsl Gaussian elim-
ination agorim frsoing triiagonal systems. In 4 I showed that cudobtain linear
speedups for moderate numbers of processors in a ring architecture. "'ithis paper vie discuss e 5
extensions to a large number of processors in a 2-D grid architecture and a hypercube.

Alternating Direction Methods on Multiprocessors

S. Lennart Iohnsson, Youcef Saad and Martin H. Schultz

Research Report YALEU7/DCS/RR-382
October 1985 D F

This work was supported in part by ONR grants N00014-82-K-0184 and N00014-84-K-.0043 and
in part by a joint study with IBMI/Kingston.

1Tv;r'Ti?4FnT A
fol PIbli

[.:.1. Introduction

We propose a few implementations of the Alternating Direction Method for solving parabolic
partial differential equations on multiprocessors. A careful complexity analysis of these implempen-

tations shows that, contrary to what is generally believed, the method can be made highly efficient
on parallel architectures by using pipelining and variations of the classical Gaussian elimination
algorithm for sohing tridiagonal systems. In [15] we showed that we could obtain linear speedups
for moderate numbers of processors in a ring architecture. In this paper we discuss extensions to
a large number of processors in a 2-D grid architecture and a hypercube.

2. The Alternating Direction Method and its parallel implementations

We consider the partial differential equation:

au U) au2- . a (x y))

on the domain (x, y, t) E fl x [0, T] - [0, 1] x [0, 1] x [0, TI, with the initial and boundary conditions:

u(x,y,O) = uox,y), V(x,y) Efl,

,)= g(,,t), V(-,,) af, t>o,

where afl is the boundary of the unit square Ml. After the description and analysis of algorithms
for the two-dimensional problem we generalize the results to higher dimensional domains.

A common approach to solve the above problem is the Alternating Direction Method. First
the equations are discretized with respect to the space variables x and y using a mesh of n interior
points in each direction. The result is the system of N = 112 ordinary differential equations:

T-1 = A,ti + BIR (2.1)

in which the matrices A, and B, represent the 3-point central difference approximations to the
operators j-(a(x, y) -)) and 4 (b(x,y) ')) respectively.

The Alternating Direction Method algorithm consists in stepping (2.1) forward in time alter-
nately in the x and y directions as follows 121]:

(- A,) = (+ (2.2)

(I- At B,)uY+- (I+ AtA,)u'+i. (2.3)2 2

We observe that if the mesh points are ordered by lines in the x direction, then (2.2) constitutes
a set of n independent tridiagonal systems whose solution is perfectly parallellizable. However,
(2.3) constitutes one tridiagonal system in which the nonzero diagonals are the main diagonal and
the (n + 1)" super- and sub-diagonals. It is important to note that this second system can also
be recast into a set of n independent tridiagonal systems by reordering the grid points by lines,
this time in the y direction. This essentially amounts to transposing the matrix representing the
solution at the n'x n grid points and is an expensive data permutation operation which is often
cited as the main drawback of Alternating Direction Method in regard to its implementation on
parallel machines. The other difficulty that has been traditionally associated with parallelizing the

. o

Page 2

Alternating Direction Method is that the classical algorithms for solving tridiagonal systems are
sequential in nature. The arithmetic complexity of the Alternating Direction Method on an idealized
parallel architecture without contention for storage or access conflicts has been investigated by
Sameh et al. [18]. Various parallel implementations of the Alternate Direction Method have been
discussed by Gannon and Van Rosendale 13] Lambiotte 19] and Ortega and Voigt [11].

The main purpose of this paper is to describe some data structures and algorithms that effi-
ciently use some candidate multiprocessor configurations for future parallel computer systems. We
limit the discussion to the solution of the two tridiagonal systems (2.2) and (2.3). The commu-
nication required for the computation of the right hand side is almost identical to that required
for the tridiagonal system, and the arithmetic complexity is approximately half of that for the
tridiagonal system. Since the choice of data structure and algorithm is unaffected by the inclusion
of the computations for the right hand side we omit them. On a single processor each half step
costs 5n 2 operations for the forward and 3,2 operations for the backward sweep. Assuming that
s arithmetic operations can be done per second, the time for a half step on a single processor is
approximately

8,,2
Tj -- 812 (2.4)

$

Throughout the paper it is assumed that communication and arithmetic computations cannot
take place concurrently. This assumption is essentially made for convenience and simplicity of our
analysis and does not affect the qualitative aspects of the conclusion.

3. Alternating Direction Methods on the shared memory model and the broadcast bus model
In this section, we assume that k processors are connected to one large shared memory with

total bandwidth B words per second and start up r. Moreover, we assume that the I/O bandwidth
of each processor is b. Thus B/b different processors can simultaneously access the shared memory.

The transfer of data between two processors is done by the first processor writing to the shared
memory and then the second processor reading from the shared memory. Consider a method
consisting in solving n/k similar tridiagonal systems in each processor for (2.2) then transposing
the data and solving (2.3) as n/k tridiagonal systems in each processor (it is assumed that k _< n).
The total time required for performing the arithmetic operations of one half step is approximately

n8n 8n2
TS.Arilh -T- = -

Performing a transpose of the n x n matrix of the unknown u requires the communication
time:

Ts.co,,, : 2-/; (7 +

bb
;t- 2k-?7 + 2-.

Hence in the shared memory model. it takes a total time of

b 12 8 2

Ts - 2k-r + 2-+
B B 'ks

to perform one half step of the Alternating Direction Method.

Assume now that all k processors are linked to each other via a global bus which allows for
broadcasting. The time to perform the arithmetic operations is the same as for the shared memory
model.

I i .° .'. • . ** * o' .o . . " . .'° , .- . . . - • ' . * " " ." o ... o . - ° - . • - - . - % . Q t= . - * . . . -

Page 3

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

Figure 1: Domain decomposition and assignment of the unit
square into 4 processors.

To transpose the matrix, each processor broadcasts in turn its data to all the other processors.
This requires a total communication time of

TB,Co,,,n m f k(7 + 11) = kr + n2

Hence the total time n12 8112

for performing one half step of the Alternating Direction Method.

Observe that neither of the above two models achieves a reasonable speed up when k increases
because of the limiting term n2 in the communcation cost. This is the source of the belief that
Alternating Direction Methods do not parallelize well.

4. Alternating Direction Methods on a multiprocessor ring
In the ring architecture the k processors are arranged in a ring and each processor can commu-

nicate with its two nearest neighbors. It is assumed throughout that the processors are numbered
so that processor numbered i is connected to processors numbered i + 1 and i - I modulo k. In
order to efficiently implement the algorithm, we will first assign the grid points such as to minimize
data communication costs. The assignment, which is described in Figure 1 for a ring of k = 4
processors, will essentially avoid transposing the data at each half step.

This assignment results in each of the tridiagonal systems (2.2), being split into k equal parts,
one part per processor. We consider the cost of the half step involving the sweep in the x-direction.
Looking at the leftmost column of subsquares in Figure 1, each of the k processors of that column
can start performing the forward sweeps simultaneously on the n/k tridiagonal systems that it
holds. Thus, the sweep eliminates the variables horizontally from left to right. When the boundary
of the first subsquare is reached, each processor sends to its right neighbor in the figure the data
that is necessary for that processor to continue its forward sweep on its part of its tridiagonal
systems, i.e., the processor numbered j sends to its neighbor numbered (j + 1) Mod k data for the

1 (j- 1)+ 1 to j tridiagonal systems. The forward sweep can now be pursued on the second column
of.subsquares, and this process is repeated until the forward sweep is completed on the variables
of the last column of subsquares. The backward sweep is accomplished in a similar fashion except
that we proceed from right to left. The half step in the y direction is performed similarly, with the
forward sweep proceeding from bottom to top and the backward sweep from top to bottom. We
observe that no processor is idle at any time. It is clear that the time to perform the arithmetic
operations is again of the form:

A il 8nz 8n2
• ~~TRAri*A s 8

% * . U . * o. , *. % * *. .-.- -.- * . - *- -. - , -

Page 4

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2: Assignment of the subdomains to the 16 processors
of a 4 x 4 grid

When we cross an interface in the forward sweep, we must transfer the pivot row plus the

corresponding element of the right hand side of each of the n tridiagonal systems in each processor
numbered j to the processor numbered (j+ 1) Mod k. These I/O operations can be done in parallel
for each of the processors on the same column. A total of k - I interfaces must be crossed. For the
backward sweep, we transfer only one element of the current solution per system. Therefore:

TR,Co.m= (k-i) (+ L) + (k-) (r+ L) ft2(k-1)7-4n

Thus, the total execution time comes to

4n 8n 2

TR(k) = 2(k - I)r + T + -

Clearly, the time for solving in the other direction is identical.

We observe that with increasing k the arithmetic time decreases while the communication time

increases linearly. The function TR(k) has a minimum which is achieved for

2n,." kopt % -

and the corresponding optimal time is linear in it:

TR.o.p f4 (2 J-+) n.

Thus by an appropriate choice of algorithm on the ring, with 0(n) processors we can achieve an

0(n) speed-up contradicting the conventional wisdom.

5. Alternating Direction Method on a square grid of processors

In this section we consider a square two-dimensional grid of processors. We assign the sub-

squares defined in the previous section naturally onto the grid, as shown in Figure 2 in which the

numbers in each square indicate the processor number to which the subsquare is assigned. It is

convenient to define ic F_ VIT.

Page 5

This assignment resembles the one of the previous section but each subsquare is now handled by
a different processor. If we proceeded as we did for the ring, we would have many processors inactive
at all times. In fact at any given time we would have only tZ processors working simultaneously;
namely all those holding the same column of subsquares. To avoid this we can think of pipelining
the computation: the forward sweep is started with only one tridiagonal system in each of the
processors in the first column of subsquares (Processors 1, 5, 9 and 13 in the illustration of Figure
2). As soon as these processors are finished with the first n/K steps of Gaussian elimination of
their first tridiagonal systems they start the forward sweep on the tc second tridiagonal systems,
while processors to their right in the grid start working on their part of the first tridiagonal system.
Thus, after r. - 1 tridiagonal systems are solved, all processors will be active. It is easy to see
that the computation consists of forward sweeps on a total of (n/tz) + oc - I tridiagonal systems
of size n/K each: n/K to complete all the first parts in each of the subsquares of the first column
of processors, and then K - 1 similar eliminations to complete the parts through the last column.
Moreover, these are non-simultaneous eliminations. Each of the partial eliminations is followed by
a transfer of the pivot row, i.e. 3 elements. The backward sweep is similar. We find a total time of

tGO= (n + K-4 + 8n]

For i = k < n, a nearly linear speed-up over the run time for a single processor is achieved

and the optimal time is linear in n. While this is asymptotically equivalent to the result for
the ring of processors, it requires an order of magnitude less time for just the data movement.
Unfortunately, the above time cannot be less than linear in n, no matter how we choose k, for
example if n < k < n i.e., it is not possible to significantly outperform the ring architecture for
implementing the Alternating Direction Method with this algorithm. The reason for this is that we
are solving tridiagonal systems with the classical Gaussian elimination algorithm. With Gaussian
elimination, each tridiagonal system cannot be solved in time less than 8n/s, independent of the
number of processors used because of its sequential nature.

To exploit the more powerful interconnection features of the grid architecture, we must use
a different algorithm. Lambiotte [9] suggested using Gaussian elimination in one direction and
odd-even cyclic reduction in the other. This, however will still require a linear time because of the
Gaussian elimination in one direction. More recently, Gannon and Van Rosendale 13] have proposed
using a scheme based on what the mechanical and structural engineers call problem substructuring
or condensation techniques.

There are many substructuring Gaussian elimination algorithms. The one briefly described
0 next is due to Wang [22]. It is a variation of an algorithm first presented by Kuck and Sameh

[19, 10]. Advantages of Wang's variant are its low arithmetic complexity with almost no increase
in communication complexity and its improved numerical properties [6]. The algorithm can be
briefly described as follows. Assume that we want to solve one tridiagonal system Tx = b of size
n in c processors, each of which holds nl/K successive rows of the system. The algorithm consists
of three phases. In the first phase a variant of Gaussian elimination is performed with almost
no interprocessor communication. In the jh processor, j = {1,2 ... ,,}, a forward elimination is
carried out on equations (j -1)! + i. i = (2,3...., fl, in order to eliminate the sub-diagonal
elements within each ! x ! diagonal block of T. This requires no interprocessor communication
and all the processors compute in parallel. Then. a backward elimination is carried out to eliminate
the super-diagonal elements in rows j - 2 through (j - 1)! for j = {2,3, ... , c} and in rows n - 2
to 1 for j = 1. After a small amount of interprocessor computation, all processors compute in
parallel. The result of this first phase is illustrated in Figure 3 for a system of size 20 distributed in

-- - . . .- --- *-. -

Page 6 x x

x x Processor 1

xx
x x
x x x
x x x
x x x Processor 2

xx xX
X x x

x x x
x x x
x x x Processor 3
x x x
X x x

x X x
x x X
x x x Processor 4
x x x
x x

Figure 3: A substructuring Gaussian elimination algorithm
on four processors.

4 processors. Communication of three nonzero matrix elements and one right hand side element,
is required between adjacent processors, leading to a total cost of

it -112 4

for the first phase.
We observe that the unknowns j2, j f {1, 2, }, satisfy an independent tridiagonal system

of #c equations distributed with one equation per processor. Clearly, the second phase will consist
in solving for these unknowns. If the processors form a ring or linear array, the total cost, using a
regular Gaussian elimination algorithm, is roughly

4 8

In the third and final phase, each processor j solves for the other variables by subtracting
multiples of the fill-in columns. This operation involves no communication, except for the transfer
of the variables j! already computed in phase 2 from processors j to processors j + 1 for j -
{1,2,..., x - 1}. Therefore, the cost of the third phase on a linear array or ring is approximately

5n 1
13 1 - Lt+ 7+ 1.

Ke

Going back to implementing the Alternating Direction Method on our grid of processors, we
observe that each row of processors can be considered as a linear array of ic 1k processors.

. ,,- ' ., , " -" . . * . .w. , *._

Page 7

In each row of processors we will solve n/1K tridiagonal systems by the substructuring Gaussian
elimination. In the first pass of the Alternating Direction Method all the rows of the processor grid
will work simultaneously, with no communication between the processors of different rows. In the
second pass of the Alternating Direction Method all processors of the same column of the processor
grid will work simultaneously with no communication between different columns.

Implementing the first phase is straighforward and its cost is
n 12n n 4 12n 2 4n

KKS x 7 + ks T"

Implementing the second phase requires a little more care. The problem is that we have n/i
tridiagonal systems each of size c and with one row per processor. Just as was pointed out in
our first implementation of the Alternating Direction Method for the grid described in the very
beginning of this section, a naive implementation consisting in sweeping in the horizontal direction
for all variables of the first column of subsquares before forward-sweeping in the second column of
subsquares and so on, would be inefficient because only one processor of each row will be active at
any time. In fact, this naive approach would require solving n/" tridiagonal systems of size ic each
and therefore the time would again be nearly linear in n. Once again the remedy is to use pipelining.
It is interesting that the seemingly minor modification of pipelining leads to a completely different
complexity analygis and a different conclusion.

An argument similar to the one of the beginning of this section shows that in order to complete
the forward sweep we need a total of n/K + #c - 1 successive steps each consisting of one Gaussian
elimination of one row of a tridiagonal system plus a transfer of the pivot row. Clearly, the backward
sweep can by pipelined likewise. The total time for this second phase is approximately

ti=-4 8).!

2-. + K-i) 2r

Finally, the third phase is fully parallelizable and requires a time of
5n2 n 1

The total as a function of k comes to .,.'"u ion For

17k + bn 5 NKTIS kU,.'3,
.TG(k) = - + (- + K -1) 2r + + /+ 2r + i. Ic: I '.,L

The important point is that it is now possible to obtain an execution tm .r no&'f less thaAj
0(n). In fact, since TG(k) is of the form ..

TG(k) =or + - +tT + Constant, 1) t

,*"i. its approximate minimum is achieved for '. .. os

k". 22~n Dist

and has the value 3 /3 2/3 A-1

It is easy to show by employing an argument similar to one used in [14] that Tc,. is close to the
actual minimum of Tg(k) when n tends to infinity.

..

r.

Page 8

" 6. Alternating Direction Methods on Hypercube Architectures

There are currently several existing loosely coupled multiprocessors, labeled under the name
hypercube, which are based on the binary n-cube networks [1, 17, 16, 20]. An m-dimensional
hypercube, or m-cube, consists of 2 "' nodes that are numbered by rn-bit binary numbers, from
0 to 2m - 1 and interconnected so that there is a link between two processors if and only if their
binary representation differs by one and only one bit. For the case rn = 3, the 8 nodes can be
represented as the vertices of a three dimensional cube. One of the main advantages of hypercubes
is that many of the classical topologies such as two-dimensional or three-dimensional meshes [8, 2,
17, 20, 71 can be imbedded preserving proximity in them. An immediate consequence of this is that
the algorithms presented for the ring and the grid architectures can be immediately adapted to the
hypercube. Thus one step of the Alternating Direction Method can be run on a hypercube in the
same time as on a mesh configured multiprocessor with the same number of processors, i.e., in time
0(n2 /3) for a sufficiently large dimension. All we need is to imbed the grid into the hypercube and
then use the substructuring Gaussian elimination of the previous section. For a detailed description
on how to map a grid into a hypercube, see for example [17]. An important natural question is
whether or not there is another algorithm which achieves a better asymptotic time because of the
more powerful topological properties of the hypercube. Once again the answer is yes.

A natural candidate for solving tridiagonal systems on multiprocessors is the cyclic reduction
algorithm [4, 5]. Using the same mapping as for the two-dimensional grid, i.e., partitioning the
grid into squares of size ! x . and assigning the square in position (i,j) to processor (i,j) of
a two-dimensional mesh of c x Kz processors embedded in the hypercube by the proximity pre-
serving embedding described above, it is clear that each of the solve phases in the Alternating
Direction Method amounts to solving in each row or column of the conceptual processor mesh n/K
independant tridiagonal systems each of which is split into r equal parts.

It is important to note that when using the cyclic reduction algorithm the distance between
the rows of the tridiagonal system will increase if the grid points are not carefully assigned to
the nodes. With a mesh embedding based on a binarv-reflected Gray code proximity is preserved
throughout the reduction process [5]. For one tridiagonal system of 2m equations, equation i is
mapped into the node whose binary label is gi, where go.g, g"-1 is the rn-bit binary-reflected
Gray code [12]. It can be easily shown that gi and P(i+ 2,)mod 2 differ in exactly two bits, for all
j>0. This property means that, with this Gray code assignment, the distance between consecutive
rows in the first step of cyclic reduction is one and is exactly two in the subsequent steps. If the
tridiagonal system is of size n larger than K = 2'". then substructuring is used with substructures of
; equations each and substructure j. j = {0. I. - 1}, assigned to processor gj. The solution
process is similar to the substructured Gaussian elimination described previously, except that cyclic
reduction is used for phase 2. The times for phases 1 and 3 are the same as before. The time for
phase 2 is [5]

'17 5= + 4r + -) (og2K - 1) - 2r-b+

Consider now the problem of employing this technique in the Alternating Direction Method.
An important observation is that each column (or row) of processors is a subcube of the hypercube,
on which work can be done independently. Thus, one can consider using the above mapping based
on Gray codes on each of the subcubes and the K different subcubes will solve in parallel a set of
n/K tridiagonal systems each of size n and spread in K processors, n/i equations per processor.
With 2 independant tridiagonal systems to be solved in each subcube in phase 2 the followingIK

t~~. . m, h-,*, mkm mm""':m
: ' '

*
m

. "

Page 9

estimate is derived assuming no pipelining of communication actions:

t2 = [4+ (--+ (1092K 7- K +s

If the two successive communications in a reduction step can be pipelined, then the term can
be reduced to

By comparing the time for phase 2 using cyclic reduction on a hypercube to that using Gaus-
sian elimination we conclude that if the communication start-up time is high with respect to the
elemental transfer time 1/b and with respect to the arithmetic processing time 1/s, then cyclic
reduction is preferrable to Gaussian elimination. If start-ups can be ignored then Gaussian elimi-
nation is superior when n is large relative to K while cyclic reduction is superior when n is small.
More precisely, let us assume that r = 0, and define a b/s. the ratio of communication to
arithmetic speeds. Then, by comparing the expressions for 4 for Gaussian elimination and cyclic
reduction respectively and by neglecting the lower order terms, we find that the break-even point
is realized when n is approximately

K
2

n(1) 0__17a . 19+24a (6.1)
4+8a 1o2K - 4+8a

What is interesting is that the two fractional coefficients in the denominator of the above expression
lie in the intervals [2.125,2.5] and [3,4.75] respectively for all values of a between zero and infinity.
Therefore, for the sake of simplicity we replace the above expression of n(o) by

K2 k
2og21K - 4 i9og2

Thus, under the above assumptions, when K = 16, (k = 256) cyclic reduction is faster for all values
of n not exceeding n F 64. When K = 64, (k = 4096) the break-even occurs at n F 512 while for
K = 1024(k = 220 = 1,048,576) it takes place at n - 65,536. Of course, if communication start-ups
were to be included then the competitiveness of cyclic reduction is further improved.

It should be noticed that with the above simplistic implementation of cyclic reduction the
reduction process for all equations converge to the same processor and this leads to a bottleneck.
The implementation can be improved by making the reduction process for different equations
converge to different processors. That the reduction process can be made to converge to an arbitrary
processor is easily seen if, conceptually, a tridiagonal system is extended with the appropriate
number of leading, or trailing equations with a corresponding 0 solution (0 off-diagonal elements
and right hand side). For K tridiagonal systems solved in a subcube of K nodes the load balancing
is perfect, and each node performs the same number of arithmetic operations in the reduction
of all K equations as is required for the reduction of a single equation. Hence, for this improved
implementation of cyclic reduction we arrive at the following estimate for the time of one step of
the Alternating Direction Method

i2= 2(210g2 K - 1)r + (2
. 5K - 10

9 2 K + 17K - 1810g2K + 2\ "

The number of start-ups is the same as in the naive implementation of the cyclic reduc-
tion method, but the communication and arithmetic bandwidth requirements are reduced. This

_IU

Page 10

improved implementation of cyclic reduction is of lower complexity than Gaussian elimination if
n < oc2 , approximately, ignoring start-ups. The reason for the advantage of Gaussian elimination

over cyclic reduction for > K is due to its lower arithmetic complexity. The solution of a tridiag-
onal system by cyclic reduction requires approximately twice the number of arithmetic operations
of Gaussian elimination, and the sequential nature of Gaussian elimination is outweighed by its
arithmetic efficiency for sufficiently many equations per node. The improved implementation of
cyclic reduction is competitive for n < 64 for K = 8. and n < 1024 for K = 32.

Adding the complexities for all three phases (tl, i2, t'3) of one step of the Alternating Direction
Method yields

17n 2 (5K 17K- f,+ 5
Tc(k) + 2(21og2K - 1)r + 2. 21 18o2K +1 +2+

b + Z Kb

The form of Tc(k) is

To(k) = + 3-+ -Iokq2 + Constant,

and its minimum is achieved for K = n. For this value of K"

TC 47+ -g-+10 109211.

7. Higher Dimensional Problems

For the solution of higher dimensional problems we note that there exist no proximity pre-
serving embedding of a m-dimensional grid in an n-dimensional grid for m > n [131. Hence, the
order of the computational complexity for solving a two-dimensional problem on a linear array
cannot be reduced below O(n) by extending the linear array to more than O(n) nodes. Solving a
m-dimensional problem with nm interior grid points, m > 2, on a linear array requires a time of
order 0(nm-i).

Similarly, for m > 3 and a two-dimensional array of processors, the minimum time is of order
O(n" -2) and the corresponding number of processors is n2. In the case of a three-dimensional
problem one simple embedding in a two-dimensional array of processors is obtained by identifying
all points in one dimension and using the two-dimensional grid embedding described previously.
Two of the three computational steps of the Alternating Direction Method for each time step are
performed as in the two-dimensional grid case but repeated n times (for the third dimension). The
third step is local to each processor and consists in solving (') tridiagonal systems of n equations
each. The time for this step is

and the time for each of the other two steps is

T'= TC= + (n+K- 1) 2r+ + + 2+--
C ~8 \K/ Kb sb#

assuming that the reduced system is solved by Gaussian elimination. It is clear that for this
embedding K = n minimizes T6, i = {1.2,3}.

b -.....-..--. -.-- -.--.-.- ',*----*- ,...-.-.~. S-,o - ...- -.. -' .-. A -., . ,' '' ' ? , - .Y ' • . - . -* . . -. "

Page I1

Higher dimeisional meshes can be embedded in sufficiently large hypercubes preserving prox-
imity by subdividing the cube into m subcubes for a rn-dimensional grid. As for the two-dimensional
grid the m-dimensional grid is partitioned into regions and the regions embedded in the hypercube
by encoding their indices in a binary-reflected Gray code. With a m-dimensional grid partitioned
uniformly into ic partitions in each dimension, the grid having n interior points in each dimension,
and the subcubes being of size K, the complexity estimate for each of the m steps of the Alternating
Direction Method is

5 (n)~-l

using cyclic reduction for the solution of the reduced system. The minimum is the same as in the
two-dimensional grid case, namely

TV - (4r + 2-_5 + 17)102 n.

8. Conclusion
In this paper we have proposed several implementations of the Alternating Direction method

on multiprocessors. Estimates of the time to execute one half step of the algorithm lead us to the
following conclusions.

* The shared memory model and broadcast bus model do not allow for highly efficient imple-
mentations of the Alternating Direction Method.

* If k < n then the ring architecture is sufficient to obtain an asymptotically optimal speed up.
The optimal time is of order 0(nm'-) for a rn-dimensional grid of 0(nm) interior points. The
optimum is attained for n processors.

e In order to reduce the computational complexity further it is necesary to use an array of
processors of a dimensionality closer to that of the problem. For a two-dimensional grid a
two-dimensional array of processors suffices to achieve a complexity less than 0(n). By using
a substructuring technique and solving the reduced system by either Gaussian elimination or
cyclic reduction a minimum complexity of order 0(n2/3) is obtained. The number of processors
for which the minimum is attained is Q(n4/3). The method which has the lowest absolute
complexity is dependent on the ratio of the communication and arithmetic bandwidths and the
ratio ! 151. For a m-dimensional grid, ?n > 3, the minimum time for a two-dimensional array
of processors is of order 0(n' - 2) and the corresponding number of processors 0(n 2).

* The hypercube architecture makes it possible to exploit very large scale parallelism in the
Alternating Direction Method. One step of ADI on an an m-dimensional problem can be
performed in time proportional to a1092n by using an nm-node hypercube. This time is of the
order of the lower bound.

o For k < n, i.e., when the number of processors is less than the number of grid points in one di-
mension, the lower arithmetic complexity of Gaussian elimination compared to cyclic reduction
may outweigh its inherent sequential nature, since the degree of parallelism is relatively low.
For a two-dimensional problem a substructuring algorithm based entirely on Gaussian elimi-
nation may be of a lower complexity than combining local Gaussian elimination with 'global"
cyclic reduction if 2 > x. Consequently, a ring or a grid architecture may yield a complexity

........

Page 12

comparable to that of a hypercube architecture. For higher dimensional problems the hyper-
cube architecture always yields a lower asymptotic complexity than a ring or a two-dimensional
array architecture. The break-even point between Gaussian elimination and cyclic reduction
occurs approximately at n K

i-S.

b.S

- . . .- . b * ' -

. 4 .W W. W...

Page 13

References

[1] L. N. Bhuyan, D.P. Agrawal, Generalized Hypercube and Hyperbus structures for a computer
network, IEEE Trans. Comp., C-33 (1984), pp. 323-333.

121 T.F. Chan, Y. Saad, Multigrid Algorithms on the Hypercube multiprocessor, Technical Report
368, Computer Science Dept., Yale University, 1985.

S[3] D. Cannon, J. van Rosendale, On the Impact of Communication Complexity in the Design of
Parallel Algorithms, Technical Report 84-41, ICASE, 1984.

[41 R.W. Hockney, C.R. Jesshope, Parallel Computers, Adam Hilger Ltd, Bristol, England, 1981.

[5] S.L. Johnsson, Odd-Even Cyclic Reduction on Ensemble Architectures., Technical Report
YALEU/DCS/RR-339, Computer Science Dept., Yale University, 1984. To appear
in SIAM J. Sci. Stat. Comp.

[6] , Solving Narrow Banded Systems on Ensemble Architectures, ACM, TOMS, 11/3
(1985).

[7] , Communication Efficient Basic Linear Algebra Computations on Hypercube Archi-
tectures, Technical Report YALEU/CSD/RR-361, Dept. of Computer Science, Yale
University, September 1985.

[81 , Data Permutations and Basic Linear Algebra Computations on Ensemble Architec-
tures, Technical Report YALEU/CSD/RR-367, Yale University, Dept. of Computer
Science, February 1985.

[9] J.J. Lambiotte, The solution of linear systems of equations on a vector computer, Ph.D. Thesis,
University of Virginia, 1975.

[10] D. Lawrie, A.H. Sameh, The Computation and Communication Complexity of a Parallel Banded
Linear System Solver, ACM-TOMS, 10/2 (1984), pp. 185-195.

[11] J.M. Ortega, R.G. Voigt, Solution of partial differential equations on vector and parallel
computers, Technical Report 85-1, ICASE, NASA Langley Research Center, 1985.

[12] E.M. Reingold, J. Nievergelt, N. Deo, Combinatorial Algorithms, Prentice Hall, New-York,
1977.

[13] A.L. Rosenberg, Preserving Proximity in Arrays, SIAM J. Computing, 4/4 (1975), pp. 443-460.
[14] Y. Saad, M.H. Schultz, Direct parallel methods for solving banded linear systems, Technical

Report YALEU/DCS/RR-387, Computer Science Dept., Yale University, 1985.

[15] , Alternating Direction Methods on Multiprocessors : An Extended Abstract., Technical
Report YALEU/DCS/RR-381, Computer Science Dept., Yale University, 1985.

[16] , Data Communication in Hypercubes, Technical Report , Computer Science Dept.,
Yale University, 1985. In preparation.

[17] , Topological properties of hypercubes, Technical Report YALEU/DCS/RR-389, Com-
puter Science Dept., Yale University, 1985.

[18] A.H. Sameh, S. Chen, D Kuck, Parallel Poisson and Biharmonic Solvers, Computing, 17
(1976), pp. 219-230.

[19] A.H. Sameh, D.J. Kuck, On Stable Parallel Linear System Solvers, JACM, 25 (1978), pp.
81-91.

[20] C.L. Seitz, The Cosmic Cube, CACM, 28 (1985), pp. 22-33.

[21] R.S. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1962.

[22] H.H. Wang, A parallel method for tridiagonal equations, ACM Trans. Math. Soft., 7 (1981),
pp. 170-183.

.................... o

